ROVATOK

FELADVÁNYOK

BETŰTÉSZTA

ASSZOGRAMMA

JÁTÉKOK

KVÍZJÁTÉK

FÓRUM

REGISZTRÁCIÓ

A mai nap képe

nap képe

Küldj be te is képet!
Képeslapküldés

Keresés az oldalon:

Friss fórum:
Játékok (1305)
A nap képe (3893)
Feladványok (17480)
Ki mondta? (258)
asszogramma (1872)
Hónap feladványa (695)
A hét kérdése (2030)
Tőlem Nektek (12422)
Nyomasevics Bobacsek (1202)
Betűtészta (3050)
Szívből szóló versek (1166)
Elnökválasztás (6)
Érdekes, vicces, jó honlapok (857)
Jellemezd Magyarország helyzetét egy filmcímmel! (15)
Ezek is mi vagyunk (472)

 > Még több fórum

A hét kérdése:

Jelentkezz be a heti kérdéshez!

 > régebbi kérdések
 > kérdés beküldés

Legolvasottabbak:
IQ teszt
Egy angliai egyetem kutatásai
Varázsgömb
Hipnózis
Agyscanner

Megoldás beküldése

  Név:   

Tipp: Ha regisztrált felhasználóként küldöd be a megoldást, statisztikát olvashatsz a teljesített feladataidról 
  

Nobel-díj közeli élmények
2018-02-11 6:55
Döcögős az út odáig
Könnyű, beküldte: titok111, szerkesztő: csibe08
Ödönke tavaly karácsonykor se nyugodott!

Meg is tanulta a karácsonyfa alatt, hogy Mersenne-számoknak nevezzük a 2^p-1 alakú számokat. Azt is tudja már, hogy ezek egy része prímszám is - ezek a Mersenne-prímek.

Azt is megtanulta, hogy Fermat-számoknak nevezik a 2^p+1 alakú számokat.

Természetesen p minden esetben egy pozitív egész szám.

Ödönkének kattogtak a kerekei, és rögtön le is vezette, hogy (2^p-1)(2^p+1)=(2^p)^2-1.

Szóval ha 2^p=k, akkor egy Fermat-szám és egy Mersenne-szám szorzata k^2-1, vagyis éppen egy Mersenne-prímet ad ki.
Vajon Ödönke mit fog kapni ezért a felfedezéséért?


Felhasználónév:

Jelszó:

Jelszóemlékeztető



Friss feladványok:
 Stációk 18.
 Párosítás 9.
 Periódusos szavak - kicsit másképp 2.
 Csak a kezeMet figyeld!
 Szakmai anagramma 52.
 Szétválogatás 2. (korrigálva)
 Mi a nevem? (2.)

Hirdetés

© 2017 DigitalAge

impresszum  ::  médiaajánlat  ::  segítség  ::  ajánló  ::  kezdőlapnak  ::  kedvencekhez   RSS