ROVATOK

FELADVÁNYOK

BETŰTÉSZTA

ASSZOGRAMMA

JÁTÉKOK

KVÍZJÁTÉK

FÓRUM

REGISZTRÁCIÓ

A mai nap képe

nap képe

Küldj be te is képet!
Képeslapküldés

Keresés az oldalon:

Friss fórum:
Játékok (2156)
A nap képe (4309)
Heti kvíz (1296)
Feladványok (17706)
AI (9)
Szívből szóló versek (1247)
Segítséget kérek, köszönöm (2536)
Betűtészta (3238)
Admin (427)
Tőlem Nektek (12509)
Ki mondta? (298)
játékos javítás (1700)
Hónap feladványa (703)
DINGIDUNGI (28)
asszogramma (1913)

 > Még több fórum

A hét kérdése:

Jelentkezz be a heti kérdéshez!

 > régebbi kérdések
 > kérdés beküldés

Legolvasottabbak:
IQ teszt
Egy angliai egyetem kutatásai
Varázsgömb
Hipnózis
Agyscanner

XYZ
2025-12-16 6:55
egyetlen egyenletben
Könnyű, beküldte: beke*, szerkesztő: Sandviking
Az x < y < z pozitív egészekkel:

x*y*(z+2) + 2*z*(x+y) + 4*(z+y) + 4*x = 223
x=?, y=?, z=? (Az összes indokolt megoldást várjuk.)

A feladat megoldása 2025. 12. 23. 06:55:00 -kor kerül ki az oldalra
(jelenlegi szerveridő:  2025 12. 17. 06:16:46)

Küldj be megoldást! Minden beküldött megoldást értékelünk!



A XYZ című feladvány statisztikája:
A feladványt eddig 284 felhasználó olvasta, és 21 megoldást küldtek be rá.
A feladványt 15 látogató fejtette meg helyesen.
Akik helyes megfejtést küldtek be (vastaggal aki határidőn belül):
Anikóka, AtomHangya, cdiv, hata, horsa, Kuala13, mbela, Mesti1, mihtoth, mutterka, padat, Svidrigailov, szedit24, szmoni65, Tucatka
Ajánld a feladványt másoknak:
Címzett neve: E-mail címe:


Felhasználónév:

Jelszó:

Jelszóemlékeztető



Friss feladványok:
 XYZ
 Kárpótlás
 Látszólag egyszerű
 Varázs-szög
 Osztás 4. Egyértelműsítve !
 Párok kerestetnek
 Deszkapalánk rejtélye 2.

Hirdetés

© 2017 DigitalAge

impresszum  ::  médiaajánlat  ::  segítség  ::  ajánló  ::  kezdőlapnak  ::  kedvencekhez   RSS