ROVATOK
FELADVÁNYOK
BETŰTÉSZTA
ASSZOGRAMMA
JÁTÉKOK
KVÍZJÁTÉK
FÓRUM
REGISZTRÁCIÓ
A mai nap képe
Küldj be te is képet! Képeslapküldés
Keresés az oldalon:
Friss fórum: Feladványok (17613) Nyelvelés (1896) A nap képe (4011) Kinek Ki (634) Betűtészta (3099) Ki mondta? (268) asszogramma (1900) Nyomasevics Bobacsek (1225) Tőlem Nektek (12455) Selejtező (148) Szívből szóló versek (1190) Hónap feladványa (698) Játékok (1544) A hét kérdése (2037) honfoglaló (120) > Még több fórum
A hét kérdése:
Jelentkezz be a heti kérdéshez!
Legolvasottabbak: IQ teszt Egy angliai egyetem kutatásai Varázsgömb Hipnózis Agyscanner
Szöveg:
Azt mondjuk, hogy az an számsorozat konvergens és határértéke (limesze) az A valós szám, ha minden ε pozitív valós számhoz létezik olyan N(ε) természetes szám, hogy n > N(ε) esetén |an-A| < ε.N(ε) neve: küszöbindex, küszöbszámA konvergens számsorozat határértékét így jelöljük:lim an = An→∞ Ha minden ε valós számhoz található olyan N(ε) természetes szám, hogy n > N(ε) esetén |an| > ε (illetve |an| < ε), akkor azt mondjuk, hogy az an sorozat határértéke a +∞ (illetve a -∞), azonban a sorozatot ekkor NEM tekintjük konvergensnek.
Azt mondjuk, hogy az an számsorozat konvergens és határértéke (limesze) az A valós szám, ha minden ε pozitív valós számhoz létezik olyan N(ε) természetes szám, hogy n > N(ε) esetén |an-A| < ε.N(ε) neve: küszöbindex, küszöbszámA konvergens számsorozat határértékét így jelöljük:
lim an = An→∞
Ha minden ε valós számhoz található olyan N(ε) természetes szám, hogy n > N(ε) esetén |an| > ε (illetve |an| < ε), akkor azt mondjuk, hogy az an sorozat határértéke a +∞ (illetve a -∞), azonban a sorozatot ekkor NEM tekintjük konvergensnek.
Neved:
Felhasználónév:
Jelszó:
Jelszóemlékeztető
Friss feladványok: Sosemvolt ország Vegyessaláta 2. Egy a négyhez 80. Körérintők Egy a négyhez 79. Csak egy Négyek
Hirdetés
© 2017 DigitalAge
impresszum :: médiaajánlat :: segítség :: ajánló :: kezdőlapnak :: kedvencekhez