Rendezés 1.
2013-10-01 6:55
Buborék
Közepes, beküldte:
csibe08*, szerkesztő: OpelAstra
Adott egy lista, melyben n darab pozitív egész szám található, rendezetlenül. A célunk, hogy a lista elemeit növekvő sorrendbe rendezzük (feltételezhetjük, hogy a lista minden eleme különböző).
A rendezésünk a következő elven működik: elindulunk az első elemtől, és összehasonlítjuk azt a másodikkal. Amennyiben a második szám kisebb, mint az első, megcseréljük őket. Ezután összehasonlítjuk az épp aktuális második elemet a harmadikkal - amennyiben utóbbi kisebb, akkor megcseréljük őket ... és ez így megy egészen addig, amíg az n-1. és az n. elemet össze nem hasonlítjuk. Ezután visszalépünk a listánk elejére, és újra végigmegyünk a listánkon.
Az első esetben tegyük fel, hogy mindig, amikor újrakezdjük a listán való vizsgálódást, végigmegyünk rajta, tehát az utolsó elem, amit összehasonlítunk, az n-1. és az n. Ebben az esetben a rendezésünk akkor áll meg, ha végigmentünk úgy a listán, hogy nem hajtottunk végre cserét.
A második esetben tegyük fel, hogy mindig, amikor újrakezdjük a vizsgálódást, az utoljára a helyére rakott elemet már nem hasonlítjuk össze az előzővel (vagyis először az (n-1, n) az utolsó összehasonlított pár, majd az (n-2.,n-1.), stb. Ebben az esetben a rendezés utolsó lépése az lesz, amikor már csak az 1. és a 2. elemet kell összehasonlítanunk.
A legrosszabb esetben hány cserét és összehasonlítást kell elvégeznünk az első és a második esetben?